Renormalization of molecular electronic levels at metal-molecule interfaces.
نویسندگان
چکیده
The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.5 eV. This decrease is caused by a change in electronic correlation energy, an effect completely absent from the corresponding Kohn-Sham gap. For weakly coupled molecules, this correlation energy change can be described as a surface polarization effect. A classical image potential model illustrates the impact for other conjugated molecules on graphite.
منابع مشابه
Electronic transport through dsDNA based junction: a Fibonacci model
A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...
متن کاملRenormalization of molecular quasiparticle levels at metal-molecule interfaces: trends across binding regimes.
When an electron or a hole is added into an orbital of an adsorbed molecule the substrate electrons will rearrange in order to screen the added charge. This polarization effect reduces the electron addition and removal energies of the adsorbed molecule relative to those of the free molecule. Using a microscopic model of the metal-molecule interface, we illustrate the basic features of this reno...
متن کاملEnergetics of metal–organic interfaces: New experiments and assessment of the field
Considerable research and development means have been focused in the past decade on organic semiconductor thin films and devices with applications to full color displays, flexible electronics and photovoltaics. Critical areas of these thin films are their interfaces with electrodes, with other organic films and with dielectrics, as these interfaces control charge injection and transport through...
متن کاملConductance saturation in a series of highly transmitting molecular junctions.
Revealing the mechanisms of electronic transport through metal-molecule interfaces is of central importance for a variety of molecule-based devices. A key method for understanding these mechanisms is based on the study of conductance versus molecule length in molecular junctions. However, previous works focused on transport governed either by coherent tunnelling or hopping, both at low conducta...
متن کاملI-V Characteristics of a Molecular Wire of Polyaniline (Emeraldine Base)
In this study, Polyaniline molecule (emeraldine base) is modeled as a molecular wire and the effects of the metal/molecule coupling strength and the molecule length on the current-voltage (I-V) characteristics are numerically investigated. Using a tight-binding Hamiltonian model, the methods based on Non-equilibrium Green’s function theory, Landauer formalism and Newns-Anderson model, our calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 97 21 شماره
صفحات -
تاریخ انتشار 2006